US009325729B2

a2z United States Patent (10) Patent No.: US 9,325,729 B2
Jajodia et al. (45) Date of Patent: *Apr. 26, 2016

(54) K-ZERO DAY SAFETY (52) US.CL
CPC ... HO4L 63/1433 (2013.01); GO6F 21/577
(71) Applicants: George Mason Research Foundation, (2013.01)

Inc., Fairfax, VA (US); The United
States of America, as represented by
the Secretary of Commerce, The
National Institute of Standards and
Technology, Washington, DC (US)

(72) Inventors: Sushil Jajodia, Oakton, VA (US);
Lingyu Wang, Montreal (CA); Steven
Noel, Woodbridge, VA (US); Anoop
Singhal, Germantown, MD (US)

(73) Assignees: George Mason Research Foundation,
Inc., Fairfax, VA (US); The United
States of America, as represented by
the Secretary of Commerce, The
National Institute of Standards and
Technology, Washington, DC (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 13 days.

This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 14/324,966

(22) Filed: Jul. 7, 2014
(65) Prior Publication Data
US 2014/0325660 Al Oct. 30, 2014

Related U.S. Application Data

(63) Continuation of application No. 13/348.457, filed on
Jan. 11, 2012, now Pat. No. 8,918,884.

(60) Provisional application No. 61/431,535, filed on Jan.

11, 2011.
(51) Int.CL
HO4L 29/06 (2006.01)
GO6F 21/57 (2013.01)

(58) Field of Classification Search
CPC ... GOG6F 21/55; GOG6F 21/56; GOGF 21/57,
GOG6F 21/554; GO6F 21/562; GOG6F 21/577,
HO4L 63/1416; HO4L 63/1425; HO4L 63/1433
USPC oot 726/23, 24, 25
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2009/0077666 Al
OTHER PUBLICATIONS

3/2009 Chen

E.W. Dijkstra. A Note on Two Problems in Connexion with Graphs.
Numerische Mathematik, 1:269271, pp. 269-271, 1959.

(Continued)

Primary Examiner — Kambiz Zand

Assistant Examiner — Noura Zoubair

(74) Attorney, Agent, or Firm — Eckert Seamans Cherin &
Mellott, LLC; Philip E. Levy

(57) ABSTRACT

Systems and methods for determining a safety level of a
network vulnerable to attack from atleast one origin to at least
one target are described. Machines, components, and vulner-
abilities in a network may be associated to one another.
Degrees of similarity among the vulnerabilities may be deter-
mined and subsets of vulnerabilities may be grouped based on
their determined degrees of similarity to one another. This
data may be used to generate an attack graph describing
exploitation of vulnerabilities and grouped vulnerabilities
and defining vulnerability exploit condition relationships
between at least one origin and at least one target. The attack
graph may be analyzed using a k-zero day metric function to
determine a safety level.

18 Claims, 10 Drawing Sheets

US 9,325,729 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

J. Pamula, P. Ammann, S. Jajodia, V. Swarup. A Weakest-Adversary
Security Metric for Network Configuration Security Analysis. Pro-
ceedings of the 2nd ACM Workshop on Quality of Protection, pp.
31-37, New York, NY, 2006. ACM Press.

T. Beth, M. Borcherding, and B. Klein. Valuation of Trust in Open
Networks. Proceedings of the Third European Symposium on
Research in Computer Security (ESORICS ’94), pp. 3-18, 1994.
J.W.P. Manadhata. An Attack Surface Metric. First Workshop on
Security Metrics (MetriCon), 2006.

An Attack Surface Metric. JW.P. Manadhata. Technical Report
CMU-CS-05-155, p. 1-22. Jul. 2005.

D. Balzarotti, M. Monga, S. Sicari. Assessing the Risk of Using
Vulnerable Components. Proceedings of the 1st Workshop on Quality
of Protection, 2005.

Metric. L. Wang, T. Islam, T. Long, A. Singhal, and S. Jajodia. An
attack-Graphed Based Probabilistic Security. Proceedings of the
22nd Annual IFIP WG 11.3 Working Conference on Data and Appli-
cations Security (DBSec *08), 2008.

M.K. Reiter and S.G. Stubblebine. Authentication Metric Analysis
and Design. ACM Transactions on Information and System Security,
vol. 2, No. 2, pp. 138-158, May 1999.

O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. Wing. Automated
Generation and Analysis of Attack Graphs. Proceedings of the 2002
IEEFE Symposium on Security and Privacy (S&P’02), 2002.

R. Chandramoull, T. Grance, R. Kuhn, S. Landau. Common Vulner-
ability Scoring System. IEEE Computer Society, 1540-7993/06.
L.P. Swiler, D. Ellis, and S. Chakerian. Computer-Attack Graph
Generation Tool. Proceedings of the DARPA Information Survivabil-
ity Conference & Exposition II (DIS-CEX ’01), 2001.

B.-G. Chun, P. Maniatis, S. Shenker. Diverse Replication for Single-
Machine Byzantine-Fault Tolerance, ATC "08. USENIX 2008 Annual
Technical Conference on Annual Technical Conference, pp. 287-292,
Berkeley, CA, USA, 2008. USENIX Association.

S. Noel, S. Jajodia, B. O’Berry, and M. Jacobs. Efficient Minimum-
Cost Network Hardening Via Exploit Dependency Graphs. Proceed-
ings of the 19th Annual Computer Security Applications Conference
(ACSAC 2003), 2003.

M. A. McQueen, T. A. McQueen, W.F. Boyer, M.R. Chaffin. Empir-
cal Estimates and Observations of 0 Day Vulnerabilities. Hawaii
International Conference on System Sciences, p. 1-12, Jan. 2009.
D.J. Leversage and E. James. Estimating a System’s Mean Time-to-
Compromise. IEEE Security Security and Privacy, vol. 6, No. 6, pp.
52-60, 2008.

R. Ortalo,Y. Deswarte, and M. Kaaniche. Experimenting with Quan-
titative Evaluation Tools for Monitoring Operational Security. IEEE
Transactions on Software Engineering, vol. 25, No. 5, pp. 633-650,
Sep./Oct. 1999.

C. Phillips and L. Swiler, Laura. A Graph-Based System for Net-
work-Vulnerability Analysis. Proceedings of the New Security Para-
digms Workshop (NSPW ’98), 1998.

K.J. Soo Hoo. Working Paper How Much Is Enough? 4 Risk-Man-
agement Approach to Computer Security. Jun. 2000.

W. Lee and D. Xiang. Information-Theoretic Measures for Anomaly
Detection. Proceedings of the 2001 IEEFE Symposium on Security and
Privacy, p. 130, Washington, DC 2001. IEEE Computer Society.
J.W.P. Manadhata. Measuring a System’s Attack Surface. Technical
Report CMU-CS-04-102. Jan. 2004.

T. Holz, C. Gorecki, K. Rieck, F.C. Freiling. Measuring and Detect-
ing Fast-Flux Service Networks. Annual Network and Distributed
System Security Symposium, 2008.

M. Frigault, L. Wang, A. Singhal, and S. Jajodia. Measuring Network
Security Using Dynamic Bayesian Network. Proceedings of ACM
Workshop on Quality of Protection (QoP ’08), 2008.

L. Wang, A. Singhal and S. Jajodia. Measuring Network Security
Using Attack Graphs. Proceedings of the 3rd ACM Workshop on
Quality of Protection (QoP’07), New York, NY, Oct. 29, 2007. ACM
Press.

L. Wang, S. Jajodia, and A. Singhal. Measuring the Overall Security
of Network Configurations Using Attack Graphs. Proceedings of 21st
IFIP WG 11.3 Working Conference on Data and Applications Secu-
rity (DBSec "07), 2007.

M. Howard, J. Pincus, and J.M. Wing. Measuring Relative Attack
Surfaces. Workshop on Advanced Developments in Software and
Systems Security, 2003.

P. Manadhata, J. Wing, M. Flynn, and M. McQueen. Measuring the
Attack Surfaces of Two FTP Daemons. ACM Workshop on Quality of
Protection, 2006.

R.E. Newman, 1.S. Moskowitz, P. Syverson and S. Andrei. Metrics
for Traffic Analysis Prevention. Privacy Enhancing Technologies, pp.
48-65, 2003.

L. Wang, S. Noel, and S. Jajodia. Minimum-Cost Network Hardening
Using Attack Graphs. Computer Communications, vol. 29, No. 18,
pp. 3812-3824, Nov. 2006.

K. Ingols, M. Chu, R. Lippmann, S. Webster, and S. Boyer. Modeling
Modern Network Attacks and Countermeasures Using Attack
Graphs. ACSAC ’09: Proceedings of the 2009 Annual Computer
Security Applications Conference, p. 117-126, Washington, DC,
2009. IEEE Computer Society.

D. Zerkle and K. Levitt. NetKuang—A Multi-Host Configuration
Vulnerability Checker. Proceedings of the Sixth USENIX UNIX Secu-
rity Symposium (USENIX ’96), 1996.

M. Reiter, S.G. Stubblebine. Toward Acceptable Metrics of Authen-
tication. Proceedings of the 1997 IEEE Symposium on Security and
Privacy, p. 10, 1997. IEEE Computer Society.

E. Chew, M. Swanson, K. Stine, N. Bartol, A. Brown and W.
Robinson. Performance Measurement Guide for Information Secu-
rity. Jul. 2008.

J.Ryan and D.J. Ryan. Performance Metrics for Information Security
Risk Management. [EEE Security and Privacy, vol. 6, No. 5, p.
38-44, 2008.

M. Castro and B. Liskov. Practical Byzantine Fault Tolerance and
Proactive Recovery. ACM Transactions on Computer Systems, vol.
20, No. 4, pp. 398-461, Nov. 2002.

P. Samarati. Protecting Respondents’ Identities in Microdata
Release. IEEFE Transactions on Knowledge and Data Engineering,
vol. 13, No. 6, pp. 1010-1027, Nov./Dec. 2001.

J. McHugh. Quality of Protection: Measuring the Unmeasurable?
Proceedings of the 2nd ACM Workshop on Quality of Protection
(QoP ’06), pp. 1-2, 2006.

M. Dacier, Y. Deswarte and M. Kaaniche. Quantitative Assessment of
Operational Security: Models and Tools. LAAS Research Report
96493, May 1996.

P. Ammann, D. Wijesekera, and S. Kaushik. Scalable, Graph-Based
Network Vulnerability Analysis. Proceeding of the 9th ACM Confer-
ence on Computer and Communications Security (CCS ’02), 2002.
S. Foley. Security Risk Management using Internal Controls.
WISG’09: Proceedings of the first ACM workshop on Information
Security Governance pp. 59-64, Chicago, Illinois, Nov. 13, 2009.
D. Farmer and E. Spafford. The COPS Security Checker System.
Computer Science Technical Reports, Report No. 90-993.

G. Gu, P. Fogla, D. Dagon, W. Lee, and B. Skoric. Towards an
Information-Theoretic Framework for Analyzing Intrusion Detec-
tion Systems. European Symposium on Research in Computer Secu-
rity, pp. 537-546, 2006.

R.W. Ritchey and P. Ammann. Using Model Checking to Analyze
Network Vulnerabilities. Proceedings of the 2000 IEEE Symposium
on Security and Privacy, p. 156-165, 2000.

Applied Computer Security Associates (A.S.C. Associates). Work-
shop on Information Security System Scoring and Ranking, 2001.

J. Doob. Measure Theory. Springer-Verlag, 1994.

P. Mell, K. Scarfone, and S. Romanosky. Common vulnerability
scoring system. IEEE Security & Privacy Magazine, 4(6):85-89,
2006.

M. Swanson, N. Bartol, J. Sabato, J. Hash, and L. Graffo. Security
metrics guide for information technology systems. NIST Special
Publication 800-55, 2003.

U.S. Appl. No. 13/348,457.

U.S. Patent

Apr. 26,2016 Sheet 1 of 10 US 9,325,729 B2

100

110
host 1

i
-

130 (iptables) ssh
firewall

IHRIRHIEHUHIRIE

ssh

HHEIEREHHHIRIEN

host 2
120

FIG. 1

U.S. Patent Apr. 26,2016 Sheet 2 of 10 US 9,325,729 B2

(user,0)
[

|
202
@ ©.2) @ (root,2)
22 220
I 221 223
203
FIG. 2A
250

252
‘ 210

»

213
240
(user,0) (Viptables.0,1) » (root,1)
212
214
(ssh,1) @

253

FIG. 2B

U.S. Patent Apr. 26,2016 Sheet 3 of 10 US 9,325,729 B2

900

300

Attack

graph
-\ [{=}
\l
Q

FIG. 3

U.S. Patent Apr. 26,2016 Sheet 4 of 10 US 9,325,729 B2

300

351 361 352 340 353 362
<http,1> <0,1> <iptables,1> <user,0> <firewall F> <Q,F>

<v, iptables,0,1>

<y, firewall,0,F>

330
<root,F>

<yser,1>
Mi 377
378 M
310 325
<root,1> <user,2>
320
<root,2>

FIG. 4

U.S. Patent Apr. 26,2016 Sheet 5 of 10 US 9,325,729 B2

400
— —~—
- L
- —~
S = £ € § © 9§ o
2 o o A g o o
g 8 ; 3 & 8 s g
Q20 =
N = 2 ~ N = 2 >
N e S’ S S o S g

-
o
(o]
(e]
an]
o
(o]
(e]

(Viptables:o: 1)

(Voep,0,1) 0o 1 0o 1 o 0 0

(Vesn,0,1) o 0 1 1 1 0o 1 0
(Vioots 1, 1) 0o 1 1 1 o 0 0 0
(Vosns1,2) o 0 1 0o 1 0o 1 1
(Virewai0,F) o o o 0o o0 1 0 0
(Vesr,0,2) o 0 1 0o 1 0o 1 1
(Vioot,2,2) o o0 0 o0 1 o 1 1

FIG.5

U.S. Patent Apr. 26,2016 Sheet 6 of 10

FiG. 6

(kGd_Bwd) 500

b

A zero day attack graph €, a st
of assets 4 with the valaation
function v(}

520
For ¢ach asscN

510

US 9,325,729 B2

ge A

530

Fet £ be the logic
proposition
representing o

Replage cach mitial
condition ¢ with TRUE

550

Replace

each condition ¢ with
560

Vee{e :ceposife)} ¢

Replace
each non-negated exploit ¢ with

570

e/ (/\c epre(e) €}

580

580

iet
ko= mint LROG(F; 1Y B,
Fiisthe setof
non-negated
exploits in

L 1<igny)

/ Yae A{ka (a7 Y e avia)

§

R

END

U.S. Patent Apr. 26,2016 Sheet 7 of 10 US 9,325,729 B2

FiG. 7

Kd_Fwd ‘ 600

A wevo day aftack graph G, an
assel a, areal numberdk » 8, 1= ‘
@, 1= 605
ST and T, include the exploits and
conditions visited so far,
respectively

KT, < &

1
(T 2k

830

False

Foreach ¢ € Fy\ Ty satisfying

pre(ey e T

H 7RG Fwd(Ga kT

Widel, To u poste)}

575 Te = To i post{e}
i

/ Retarn /_
840

/ (N erperad /

U.S. Patent Apr. 26,2016 Sheet 8 of 10 US 9,325,729 B2

FiG. 8A

700 (kOd_Shortest)
]

A zero day attack graph G, an
703 asset L

I
Let G, be a directed acyclic graph (DAG)
706 with a vertex L and elabel be an empty

array

|
Let (G, elabel) = k0d_Graph(G. L, Gy,
709

elabel)

|

712 Let vlist be any topological sort of G

Let dist/, = {{0, $)} and dist = ({00,)}
715 for any other vertex x

721 Delete first vertex u from viis
|
724 For each outgoing edge (u, v) of
|
727 | Let elist be the set of all edges reachable
from v
]

730 For cach {x,) € dist,
|
’ / . " f "
733 Lety' ={e:ecylUelabell(u v)],0 ediste eelabelle’} e =y ¢ }
|
736 Letx' = x + k0d(({ y Uelabel{tu, v)]\y') N Eg, &)
I
739 Let disty, = dist, U, v')
]
742 While ({x,), (x', ¥') € disty,) x 2 (x" + kOd(y' 1 Eg, #1)
|
Delete (x. y) from dist,, 745

|
748 — Return min({x . {x, ¢ € distyg, is a dummy vertex})

U.S. Patent Apr. 26, 2016

FIG. 88

753

Sheet 9 of 10

US 9,325,729 B2

(k0d_Graph)?50

]

A zero day attack graph
Goanasset L, e DAG
G,, an wray elabel

755

Let

1,/ i];7 Vo L,, be the DNF

789

af 1.

762

J———————— |

758

cordition ¢ with ZRUE

Replace

Y "
¥ Veale rcapostfe®

i

—— Replace
Replace cach initial cach condition ¢ with L_Jeach non-negated exploit ¢ with

AT ep;‘é(:’)"?)

766

Let L be 1its DNF
i

785

Let

ko = 1ain {kDA(F, T B, @)
F;1s the set of non-negated
explofts in L, 1 £i<n})

there exists & conjunctive clapse[in L

including more than one condition

773

For each conjunctive elause /in L

776

779

If [inclodes a condition ¢

2

Add vertex ¢
and edue {4, o) o0 G,
i

782 | Letelabel[(L, o)} o besctofexplnitsin/ | ygg

i

Lt <G, elabely = &0d GraphlG, ¢ G, elabel)

ARecursive call with cas

788

Add 3 duramy vertex o and edge (&, H 1o G,

791 Let elabeli{L, d}} be set of exploits in {

Return G 784

U.S. Patent Apr. 26, 2016 Sheet 10 of 10 US 9,325,729 B2

810
(2.0) 810 (2.9)
2 | 802 3 |e8o3
i (2.2) 810
(2,@) 810 (Vipmbles:0,1) 4 804
1 {801 . 37201) 354 815
iptables,Y, (SSh,1) (,LQ)
373

(Viirewat, 0. F)
371 374
(Viutp, 0, 1) {Vesn,0,1)

315 830 363 815
(user,) 1(0,(Vesn,1.2)) (0.2) (1,9)
377 375
(Vsshx1 r2) (Vssh,O,Z)
325 840
(User.2) (0, (vioor.2,2))
A
378
(Vroot,2-2)
320 820

(root,2) (0,9)

800

FIG. 9

US 9,325,729 B2

1
K-ZERO DAY SAFETY

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 13/348,457, filed Jan. 11,2012. U.S. application Ser. No.
13/348,457 claims priority from U.S. Provisional App. Ser.
No. 61/431,535, entitled “k-Zero Day Safety,” filed Jan. 11,
2011. The entirety of both of the above-listed applications are
incorporated herein by reference.

This invention was made with government support from
the National Institute of Standards and Technology under
grant 6ONANBID9192. The government has certain rights in
the invention.

BRIEF DESCRIPTIONS OF THE DRAWINGS

FIG. 1 depicts a network according to an embodiment of
the invention.

FIG. 2A depicts a network according to an embodiment of
the invention.

FIG. 2B depicts a network according to an embodiment of
the invention.

FIG. 3 depicts a block diagram of a model generation
according to an embodiment of the invention.

FIG. 4 depicts a zero day attack graph according to an
embodiment of the invention.

FIG. 5 depicts a relation table according to an embodiment
of the invention.

FIG. 6 depicts a k-zero day safety computation flow chart
according to an embodiment of the invention.

FIG. 7 depicts a k-zero day computation flow chart for a
given k according to an embodiment of the invention.

FIGS. 8A and 8B depict a flow chart for finding shortest
paths in a directed acyclic graph according to an embodiment
of the invention.

FIG. 9 depicts a directed acyclic graph according to an
embodiment of the invention.

DETAILED DESCRIPTION OF SEVERAL
EMBODIMENTS

Systems and methods for analyzing network vulnerabili-
ties are presented. Network vulnerability analyses described
herein may determine k-zero day safety for network and/or
computer systems. For example, a network may be moni-
tored, analyzed, and modeled. The network model may in
turn be analyzed to determine how many unknown vulner-
abilities may be required to compromise a network asset,
regardless of what vulnerabilities those are. The determina-
tion may be used for hardening the network.

Computers may be linked to one another via a network or
networks. A computer may be any programmable machine
capable of performing arithmetic and/or logical operations.
In some embodiments, computers may comprise processors,
memories, data storage devices, and/or other commonly
known or novel components. These components may be con-
nected physically or through network or wireless links. Com-
puters may also comprise software which may direct the
operations of the aforementioned components. Computers
may be referred to with terms that are commonly used by
those of ordinary skill in the relevant arts, such as machines,
servers, PCs, mobile devices, and other terms. It will be
understood by those of ordinary skill that those terms used
herein are interchangeable, and any computer capable of per-
forming the described functions may be used. A network may

10

15

20

25

30

35

40

45

50

55

60

65

2

be any plurality of completely or partially interconnected
computers wherein some or all of the computers are able to
communicate with one another. It will be understood by those
of ordinary skill that connections between computers may be
wired in some cases (i.e. via wired TCP connection or other
connection) or may be wireless (i.e. via WiFi connection).
Any connection through which at least two computers may
exchange data can be the basis of a network. In some cases, a
network may be a cloud network wherein computation, soft-
ware, data access, storage, and/or other services may be pro-
vided to end user computers from servers distributed through-
out the Internet or some other network.

Computers and networks may be vulnerable to outside
intrusion. Network operators may wish to secure networks
against potential intrusion and/or evaluate likelihoods and/or
sources of potential intrusion. As part of this process, present
network security may be measured, and analysis may be
performed to determine how network security may change if
new security measures are introduced or if network configu-
ration is modified. Metrics measured and analyzed by the
systems and methods described below may determine how
many distinct zero day vulnerabilities a network can resist
and/or whether a network can resist a specific number of zero
day vulnerabilities. A zero day vulnerability is a vulnerability
whose details are unknown except that it satisfies at least the
following two conditions. (Conditions may exist which may
be prerequisites for exploiting vulnerabilities of network
components and/or may be results of actually exploiting vul-
nerabilities of network components.) The first condition is
that the vulnerability cannot be exploited unless a network
connection exists between the source and destination hosts, a
remote service with the vulnerability exists on the destination
host, and the attacker already has a privilege on the source
host. The second condition is that exploitation of the vulner-
ability can potentially yield any privilege on the destination
host. Any element of a computer and/or network which may
be vulnerable to an attack can be considered a component that
is evaluated as described herein. A component (or asset) may
be any unit of computational processing that can contribute to
anetwork attack vulnerability, such as software employed by
any piece of hardware on the network. Some components may
be assets that may be specific, incidental, or intermediate
targets of attack.

A k-zero day metric may be determined for a network to
evaluate how many distinct zero day attacks may be required
to breach the network. A larger k-zero day metric number may
indicate a relatively more secure network, since the likelihood
ot having more distinct unknown vulnerabilities all available
at the same time, applicable to the same network, and exploit-
able by the same attacker, may be lower. A zero day vulner-
ability as defined above may represent a worst-case scenario
about the pre- and post-conditions of exploiting a vulnerabil-
ity. A particular zero day vulnerability may in reality require
stronger pre-conditions while implying weaker post-condi-
tions than those stated above. Therefore, the k-zero day met-
rics used herein may yield a conservative network security
result. Results may also be conservative in embodiments
wherein one zero day vulnerability is assigned to each com-
ponent of a network, because inreality a component may have
more vulnerabilities (note that a more conservative result of a
metric is one that requires fewer zero day vulnerabilities). In
some embodiments, a network may have more than one
k-zero day metric number. As described below, k-zero day
metric numbers may be calculated for individual targets
within a network from an origin or origins. Different targets
may be relatively easier or harder to reach from different
origins and may have different k-zero day metric numbers. A

US 9,325,729 B2

3

target may be any element of a network which may be subject
to an attack, such as a condition, privilege, machine, or other
element. Likewise, an origin may be any element of a network
from which an attack can be started, such as a condition,
privilege, machine, or other element.

FIG. 1 depicts a network 100 according to an embodiment
of'the invention. In this example network 100, a firsthost 110
provides an HTTP service (http) and a secure shell service
(ssh), and a second host 120 provides ssh. The first host 110
and second host 120 may be able to communicate with one
another behind a firewall 130. The firewall 130 may allow
traffic to and from the first host 110, but only allow connec-
tions to the second host 120 that originate from the second
host 120. A remote computer 140 may exist outside the fire-
wall 130. The remote computer may only communicate with
the first host 110 and second host 120 if allowed by the
firewall 130 or by exploiting one or more network vulner-
abilities.

FIG. 2A depicts a network 200 according to an embodi-
ment of the invention. In this example, the remote computer
140 of FIG. 1 is attempting to access the first host 110 and
second host 120 by exploiting network vulnerabilities, and
the target of the attack is a root privilege 220 on the second
host120. FIG. 2A shows three sequences 201, 202, and 203 of
zero day attacks leading to the root privilege 220 of interest.
Within the sequences 201, 202, and 203, each numeric pair
denotes a condition and each triple inside oval denotes the
exploitation of a zero day vulnerability. In the first sequence
201 or second sequence 202, an attacker 240 on a remote
computer 140 may exploit a zero day vulnerability in either
http 211 or ssh 212, respectively, on the first host 110 to obtain
the root privilege 210 for the firsthost 110. Using the first host
110 as a stepping stone, the attacker 240 may exploit a zero
day vulnerability in ssh 224 on the second host 120 to reach
the target root privilege 220. In the third sequence 203, the
attacker 240 may exploit a zero day vulnerability 221 in the
firewall 130 (e.g., a weak password in the firewall’s 130
web-based remote administration interface) to reestablish a
blocked connection 222 to the second host 120 and then
exploit an ssh vulnerability 223 on the second host 120. In this
example, the network can resist at most one zero day attack,
since the second sequence 202 only requires one unique zero
day vulnerability in ssh 212 and 224 for both first 110 and
second 120 hosts.

FIG. 2B depicts a network 250 according to an embodi-
ment of the invention. In this example, the remote computer
140 of FIG. 1 is attempting to access the first host 110 and
second host 120 by exploiting network vulnerabilities, and
the target of the attack is a root privilege 220 on the second
host120. The vulnerabilities of FIG. 2B are similar to those of
FIG. 2A, except that iptables 213 have been added. The
iptables 213 may only allow specific computers to connect to
ssh 212 of the first host 110, not including the remote com-
puter 140 and its associated attacker 240. FIG. 2B shows four
sequences 251, 252, 253, and 254 of zero day attacks leading
to the root privilege 220 of interest. The first sequence 251 is
similar to the first sequence 201 of FIG. 2A, and the fourth
sequence 254 is similar to the third sequence 203 of FIG. 2A.
In the second sequence 252, the attacker 240 may exploit a
zero day vulnerability in iptables 213 to obtain the root privi-
lege 210 on the first host 110, and then the attacker 240 may
exploit a zero day ssh vulnerability 224 to obtain the root
privilege 220 on the second host 120. In the third sequence
253, the attacker 240 may exploit a zero day vulnerability in
iptables 213 to connect to ssh 214 on the first host 110, and
then the attacker 240 may exploit a zero day ssh vulnerability
212 to obtain the root privilege 210 on the first host 110, and

20

25

30

35

40

45

4

finally the attacker 240 may exploit a zero day ssh vulnerabil-
ity 224 to obtain the root privilege 220 on the second host 120.
All four sequences 251, 252, 253, and 254 now require two
distinct zero day vulnerabilities. The hardening effort of add-
ing iptables may allow the network to resist one more zero day
attack. The hardened network can thus be considered rela-
tively more secure, since the likelihood of having more zero
day vulnerabilities available at the same time, in the same
network, and exploitable by the same attacker, may be lower.
Therefore, the number of distinct zero day vulnerabilities can
be used to measure the relative security risk of different
networks, which may otherwise be indistinguishable.

The examples of FIGS. 2A and 2B may represent simpli-
fied systems relative to some systems which may be evalu-
ated. For example, it is assumed that ssh on the first host 110
and the second host 120 both correspond to the same zero day
vulnerability, which is not necessarily true. Similarly, exploit-
ing http and ssh may not necessarily lead to the root privilege
220. Known vulnerabilities, which may interact with zero day
vulnerabilities, are not considered. Also, an insider attack
may directly give attackers a privilege without any zero day
vulnerability. It will be understood by those of ordinary skill
that the examples of FIGS. 2A and 2B are not intended to
represent the full range of vulnerabilities and complexities
present in various networks. Modeling and calculating k-zero
day safety, as described below, may be performed for simple
examples such as the examples of FIGS. 2A and 2B and/or
more complicated examples such as those which may be
found in existing and future computer networks.

Remote services and network connectivity may be identi-
fied by examining hosts” configurations. A network scanning
may be insufficient to determine k-zero day safety in some
embodiments, since it may only reveal services or connectiv-
ity currently disabled by security services (e.g., ssh behind
iptables). Therefore, some embodiments may utilize a model
which includes data about the existence, instead of the current
reachability, of a service or host.

FIG. 3 depicts a block diagram of a model generation
process 900 according to an embodiment of the invention.
Determination of a k-zero day safety metric for a network
may be based on an abstract model of network elements.
Examples of methods and systems for generating network
models may be found in U.S. Pat. No. 7,904,962, entitled
“Network Attack Modeling, Analysis, and Response,” the
entirety of which is incorporated by reference herein. The
process 900 of FIG. 3 is similar to processes taught in U.S.
Pat. No. 7,904,962. To generate a model, the process 900 may
analyze a network 100 to determine what elements are present
on the network 100, gathering machine information 910,
component information 920, vulnerability information 930,
and exploit information 950. Machine information 910 may
identify hardware elements of the network 100, component
information 920 may identify components on the network
100 which may be attacked, vulnerability information 930
may identify known vulnerabilities as well as locations where
zero day vulnerabilities may exist, and exploit information
950 may include data about possible exploits of vulnerabili-
ties.

The process 900 may map at least one machine to at least
one component using network 100 machine information 910
and/or component information 920 and a module such as a
machine mapper 912. The result may be a set of machine
mappings 914. The mapping of machines to components may
include at least one application of at least one corrective
measure on a selective basis. A component mapper 922 may
use network 100 component information 920 and/or vulner-
ability information 930 to map at least one of the components

US 9,325,729 B2

5

to at least one vulnerability. The result may be a set of com-
ponent mappings 924. A vulnerability mapper 934 may use
network 100 vulnerability information 930 and/or exploit
information 950 to map at least one vulnerability to at least
one exploit, resulting in vulnerability mappings 934. Exploits
may include at least one precondition mapped to at least one
postcondition. An attack graph 300 may be generated using at
least one of the exploits 950 using an attack graph generating
module 960. The attack graph 300 be used by a metric calcu-
lator 970 as a network model for calculating k-zero day safety.
Attack graphs 300 are described in greater detail with respect
to FIG. 4 below. A metric calculator 970 may be a computer
that may be constructed and arranged to perform processes
such as those shown in FIGS. 6-8 below.

In the following discussion, an example model for a net-
work is presented. Table 1 provides a listing of notations
which are used in the model. Further details about the terms in
Table 1 will be provided in the explanation of the example
model.

TABLE 1
H, h A set of hosts, a host
S, s A set of services, a service
P p A set of privileges, a privilege
serv(.) Services on a host
priv(.) Privileges on a host
conn Connectivity
VoV, Zero day vulnerability
(v, h,h') Zero day exploit

Pre and post conditions

pre(.), post(.)
G Zero day attack graph

C; Initial conditions
€1,82...,¢ Attack sequence

Assets
seq(a) Attack sequences compromising a
=, Relation of non-distinct exploits
k0d(.) The k-zero day safety metric

In some embodiments, a network model (which may be
generated using the process of FIG. 3) may comprise several
elements. For example, the following elements may be
present:

H, S, and P, which denote the network’s sets of hosts
(computers and networking devices), services, and privi-
leges, respectively.

serv(.): H—2" and priv(.): H—2%, which denote functions
that map each host to a set of services and privileges, respec-
tively.

conn< HxH, which denotes a connectivity relation
between elements.

In the model, hosts may include networking devices (for
example firewalls, routers, etc.) because such devices may be
vulnerable to zero day attacks, and a compromised device
may enable access to blocked services. Note that hosts, ser-
vices, and privileges may all be components that may be
vulnerable to attack.

A component (such as a service) in the model may be
remotely accessible over the network, in which case it may be
called a remote component, or a component may be used to
disable a remote component or network connection, in which
case it may be called a security component. The example
model does not include components that can only be
exploited locally for a privilege escalation (modeling such
applications may not be feasible at all considering that an
attacker may install his/her own applications after obtaining
accesses to a host). On the other hand, the example model
includes remote components and connectivity currently dis-

10

15

20

25

30

35

40

45

50

55

60

65

6

abled by security components, since the former may be re-
enabled through zero day attacks on the latter (e.g., ssh behind
iptables in FIG. 2B).

In the model, privileges may include those under which
components are running and those that can potentially be
obtained through a privilege escalation. Including the latter
may enable modeling of the strength of isolation techniques
(e.g., sandboxing or virtual machines) that may prevent such
an escalation.

Returning to FIG. 2B, an example model for the network
250 may be as follows:

H={0,1,2,F} (F denotes the firewall)

conn={(0,F),(0,1),(0,2),(1,F),(1,0),(1,2),(2,F),(2,0),(2,1)}
((0,2) is included since it can be enabled by a zero day attack
on the firewall)

serv(1)={http,ssh,iptables}, serv(2)={ssh}, and serv(F)=
{firewall} (firewall is a security service and it may disable
connection (0,2))

priv(1)=priv(2)={user,root}.

Even if vulnerability-specific properties, such as likeli-
hood and severity, are not assumed, generic properties com-
mon to most vulnerabilities may be assumed for zero day
vulnerabilities. For example, the zero day exploit of a privi-
lege may act as a placeholder when isolation techniques are
modeled below. A zero day exploit may be modeled as fol-
lows:

For each heH and xe(serv(h)Upriv(h)), denote by v, a zero
day vulnerability. A zero day exploit is the triple:

(v,h,h') where (h,h')econn and seserv(l'), or

(v,-h,h) where pepriv(h).

Unlike an exploit of a known vulnerability which may have
unique pre- and post-conditions, all zero day exploits may
share the same hard-coded conditions described above. A
zero day exploit of each security service may have additional
post-conditions, which may indicate that the exploit will
reenable disabled conditions. For zero day exploits of a privi-
lege, the pre-conditions may include the privilege of every
service, since it may be assumed that a zero day exploit may
potentially yield any privilege. Conditions may be modeled as
follows:

Denote by E, the set of all zero day exploits, C, the set of
conditions (connU{(x,h): h eH, xeserv(h)Upriv(h)}), and
define functions pre(.): E,—C, and post(.):E,—C, as:

pre((v h,h))={(h,h"),(s,h"),(p,uimsh)} for each seserv(h),
where p,,,;,, is the least privilege on h

pre((v,.hh)={p,: seserv(h),ps=p} for each pepriv(h)

post((v,,h,h"))={p,} for each remote service s with privi-
lege p;
post((v,,h,h"))={p,} UC, for each security service s, where
C, is the set of conditions disabled by s

post((v,,l,h))={(p,h)} for each pepriv(h).

FIG. 4 depicts an example zero day attack graph 300
according to an embodiment of the invention. Attack graphs
300 may be generated for any target (or targets) and from any
origin (or origins). Like the examples of FIGS. 2A and 2B, the
target is <root, 2> and the origin is <user, 0> in this example.
There may be several origins of paths of vulnerabilities that
may be exploited to eventually lead to one or more targets. By
relating exploits of known vulnerabilities and zero day
exploits through common pre- and post-conditions, a zero
day attack graph 300 such as that of FIG. 4 may be composed.
Each numeric pair 310-364 denotes a condition and each
triple inside an oval 371-378 denotes the exploitation of a zero
day vulnerability. Numeric pairs 315, 325, 340-364 having
arrows pointing to exploitations 371-378 may be precondi-
tions for exploitations 371-378 to which they point. Numeric
pairs 310-330, 354, 363 to which arrows from exploitations

US 9,325,729 B2

7

371-378 point may be postconditions for exploitations 371-
378. Note that some numeric pairs 315, 325, 354, 363 may be
preconditions for some exploitations 371-378 and postcondi-
tions for others. Also, numeric pairs 315, 325, 340, 355, 361
may be either pre- or postconditions for more than one exploi-
tation 371-378. In a zero day attack graph, exploits of known
vulnerabilities may be considered as shortcuts that help
attackers to satisfy a condition with less zero day exploits.
Therefore, exploits of known vulnerabilities may be trust
relationships, misconfigured applications, or some other type
of vulnerability, as long as they may provide a shortcut for
bypassing zero day exploits. A zero day attack graph may be
generated as follows:

Given a set of exploits of known vulnerabilities E, and their
pre- and post-conditions C,, let E=E,UE,, C=C,UC,, and
extend pre(.) and post(.) to E—=C (as the union of rela-
tions). The directed graph G=EUC{(x,y): (yeEA
xepre(y)) ¥ (xeB A yepost(x))}) may be a zero day attack
graph.

In some embodiments a zero day attack graph may be
generated as described above, or using some other formula,
instead of being obtained by injecting zero day exploits into
an existing attack graph of known vulnerabilities. This is
because some unreachable exploits may be discarded in gen-
erating an attack graph of known vulnerabilities, whereas
such exploits may indeed serve as shortcuts for bypassing
zero day exploits in a zero day attack graph.

One or more initial conditions may be associated with a
zero day attack graph. Initial conditions may serve at least two
purposes. First, initial conditions may include all conditions
that are not post-conditions of any exploit. Second, initial
conditions may also include conditions that may be satisfied
as the result of insider attacks or user mistakes. The effects of
such attacks or mistakes may be modeled as the capability of
satisfying post-conditions of an exploit without first execut-
ing the exploit. An attack sequence may be defined as a total
order, which means multiple attack sequences may corre-
spond to the same set of partially ordered exploits. The logical
connectives A , ¥, and 7 may model cases where multiple
conditions must be satisfied to cause damage (e.g., the avail-
ability of a file with multiple backups on different hosts),
cases where satisfying at least one condition will cause dam-
age (e.g., the confidentiality of the aforementioned file), and
cases where conditions are not to be satisfied during an attack
(for example, conditions that will trigger an alarm), respec-
tively. An asset value may be the relative weight of indepen-
dent assets. Initial conditions, attack sequences, and assets
may be determined according to the following, given a zero
day attack graph G.

The set of initial conditions is given as any C,= C satisfy-
ing CI 2 {c:(VeeB)(c&post(e))}.

An attack sequence is any sequence of exploits e, e,, . . .,
e, satistying (Vie[1,j])(Vc epre(e,)) (ceCpV (Ixe[1, i-1]ce-
post(e,))

An asset a is any logical proposition composed of condi-
tions and the logical connectives 7,25 , z,~, and = for which
an asset value v(a) is given through a function v(.): A—[0,)
where A denotes the set of all assets

Define a function seq(.): A—>2%as seq(a)={e,, ., €;: aepost
()} where Q denotes the set of all attack sequences

The zero day attack graph of FIG. 4 may correspond to the
network of FIG. 2B. If insider attacks and/or user mistakes are
not considered, the following attack sequences may compro-
mise the asset (root,2) 320:

1. (vhttp,0,1) 371, (vssh,1,2) 377, (vroot,2,2) 378

2. (viptables,0,1) 372, (vssh,1,2) 377, (vroot,2,2) 378

3. (viptables,0,1) 372, (vssh,0,1) 374, (vssh,1,2) 377, (vroot,
2,2)378

10

15

20

25

30

35

40

45

50

55

60

65

8

4. (vfirewall,0,F) 373, (vssh,0,2) 375, (vroot,2,2) 378
If insider attacks on the first host 110 are considered, the

following sequence may also compromise the asset 320:

5. (vssh,1,2) 377, (vroot,2,2) 378
If a different asset (root,1)A (root,2) 310, 320 is consid-

ered, then sequences 1-3 above (but not 4-5) may compromise

the asset 310, 320.

Note that some of the attack sequences above have differ-
ent origins. A k-zero day analysis may consider some or all
origins in an attack graph when determining a safety level. In
some cases, multiple zero day exploits may be counted as a
single exploit. This may be incorporated into a model using
the relation =,. The relation =, may be defined as follows:

Definearelation =, = E,xE, such that e= ¢'indicates either
e and ¢' are exploits of the same zero day vulnerability, or
e=(v,h,;,h,), e=(v,;h,.h,) and exploiting s yields p. Say e and
¢' are distinct if e= ¢'.

One example of a case wherein two or more exploits are
only counted once may be when multiple exploits involve the
same zero day vulnerability. Another example may be when
the exploit of a service is related to the exploit of a privilege
such that the service exploit will directly yield the privilege
due to the lack of isolation between the two. In some cases, a
probability may be associated with relation =, to indicate a
degree of similarity or isolation between the multiple exploits
it relates. If a probability is associated with a relation that
probability need not necessarily be incorporated into a model,
so that the effect of the relation on a final metric will not be
affected.

Given a plurality of sets of zero day exploits, the function
k0d(.) may count how many exploits cannot be related
through =,.. In particular, if one of the sets is empty, then the
function k0d(.) may yield the number of distinct zero day
exploits in the other set. When a probabilistic approach is
adopted in defining the relation =, the function k0d(.) can be
revised to give an expected value (mean). A metric function
k0d(.) may be defined as follows.

Define a function k0d(.): 25°x25°—[0, =] as kOd(F,F")-
max({IF"[:F" < (FAF"), (Ve e.el")(e;=e,)}) where [F"|
denotes the cardinality of F", max(.) denotes the maximum
value in a set, and FAF' denotes the symmetric difference (that
is, F\FHU(E"\F)).

A function kOd(a) may be a metric useful to determine a
minimum number of distinct zero day exploits required to
compromise an asset, set of assets, or network .. This can be
proven according to the following:

For all F, F', F" = E,, the following hold:

1. kOd(F,F")=0 iff F=F": This is straightforward since kOd(F,
F')=0 iff FDF'=@, and the latter is equivalent to F=F"

2. kOd(F,F")=k0d(F",F): This property is satisfied by the sym-
metric difference.

3. kKOd(F,F)+k0d(F' F")=k0d(F,F"): Denote by tmp(G) the
function max({IG'l: G'= G, Ve, ,e,eGi(e;=€,)}). First, the
symmetric difference satisfies the triangle inclu-
sion relation FAF" < (FAF)U(F'AF"). So, tmp((FAF)U
(F'AF")=tmp(FAF") holds. Next, it may only need to be
shown tmp(FAF)+tmp(F'AF")=ztmp((FAF)YU(F'F")) s
true. It may suffice to show the function tmp(.) to be sub-
additive, that is, tmp(G)+tmp(G")ztmp(GUG") holds for
any G,G' < E,,. This follows from the fact that if the relation
e e'holds for any e,=c'eG (or e,e'e3"), it also holds in GUG'
(the converse is not necessarily true).

The metric k0d(.) may be applied to assets, sets of assets,
and/or networks. For example, kOd(a) may indicate the mini-
mum number of distinct zero day exploits required to com-
promise a (which may be an asset, set of assets, network,
and/or another component or element of interest). This num-

US 9,325,729 B2

9

ber may be unique for each asset, although multiple attack
sequences may compromise the asset. The metric may be
applied to a set of independent assets by taking a weighted
average with asset values as the weight. Finally, by applying
the metric to all components within a network, a measure-
ment of a network’s resistance to potential zero day attacks
may be obtained. This analysis may be performed as follows:

Given a zero day attack graph G, a set of initial conditions
C,, and a set of assets A:

for any aeA, use kOd(a) for min({k0d(qNE,,D):
geseq(a)}), where min(.) denotes the minimum value in a set
and q stands for both a sequence and a set. For any ke[0,k0Od
(a)), a is k-zero day safe.

Given any A'= A, kOd(A") for 2 ,_,.,(k0d(a)v(a))/Z, ,,v
(a) may be used.

For any ke[0,kOd(A")), A" is k-zero day safe. In particular,
when A'=A, the network is k-zero day safe.

The empty set in the definition above may be interpreted as
the conjunction of all initial conditions (which may be com-
promised without any zero day exploit).

FIG. 5 depicts a relation table 400 according to an embodi-
ment of the invention. The relation table 400 may be associ-
ated with the example of FIG. 4. Returning to the example of
FIG. 4, suppose all exploits of services involve distinct vul-
nerabilities except (vssh,0,1) 374, (vssh,1,2) 377, and (vssh,
0,2) 375. Assume ssh and http are not protected by isolation
but iptables is protected. Then, the relation =, may be shown
by FIG. 5, wherein a 1 may indicate two exploits are related
and a 0 may indicate that two exploits are not related (or, by
adopting a probabilistic approach, these can be regarded as
the probabilities associated with the relation =,).

Using a model established according to the processes
described above or in some other way, k-zero day safety for
the system represented by the model may be computed. For
example, to compute the k-zero day safety of a network, a
logic proposition of each asset in terms of exploits may be
derived. Then, each conjunctive clause in a disjunctive nor-
mal form (DNF) of the derived proposition may correspond to
a minimal set of exploits that may jointly compromise the
asset. The value of k may then be determined by applying the
metric k0d(.) to each such conjunctive clause.

FIG. 6 depicts a k-zero day safety computation flow chart
according to an embodiment of the invention. A procedure
such as kOd Bwd 500 shown in FIG. 6 may be applied to
obtain a value of k. This procedure 500 is an example of a
procedure that may determine the k-zero day safety for one or
more assets. A zero day attack graph may be received 510. For
each asset associated with the zero day attack graph, ae A 520.
L may be defined as the logic proposition representing a 530.
For example, a zero day attack graph such as the one shown in
FIG. 4 may be interpreted as a logic program by regarding
each exploit or condition as a boolean variable and having a
logic proposition c<—. for each initial condition c, a proposi-
tion e<—A (¢ for each pre condition relationship, and a
set of propositions {c<—e:cepost(e)} for each post condition
relationship. An inner loop may repetitively apply the afore-
mentioned logic propositions to derive a formula by letting
L,ol,w ... L, bethe DNF of L 540, replacing each initial
condition ¢ with true 550, replacing each condition ¢ with
e forceposien} € 360, and replacing each non-negated exploit
ewithe> (= ,,.»c) 570, until each ¢ is considered. Note that
a negated condition given in the asset may be replaced with
the negation of exploits, and a negated condition may not be
further processed. This is because in order not to satisfy a
condition, it may suffice not to execute those exploits that
have the condition as their post-condition (on the other hand,
to satisfy a condition requires more actions). When a DNF is

15

20

30

35

40

45

50

10

generated for each asset 540, k-zero day safety may be com-
puted 580. The results of all iterations may be aggregated as
the final output 590. Note that this example process omits the
simplification of logic propositions using logic tautologies
(such as el >~ 1=false) and the handling of cycles in the
attack graph by maintaining a set of predecessors for each
visited node.

The procedure 500 of FIG. 6 may have a worst-case com-
plexity that is exponential in the size of the zero day attack
graph. For example, the complexity may be partially deter-
mined by the size of the derived proposition L. and its DNF.
Both may be exponential. Given a zero day attack graph, an
asset a, and any non-negative integer k, the problem offinding
an attack sequence qeseq(a) that minimizes k0d(qME,,d) is
NP-complete (wherein NP indicates nondeterministic poly-
nomial time). The proof of this statement is as follows.

First, the problem is NP, since whether a given sequence of
exploits q satisfies geseq(a) 2 k0d(qNE,,@)=k may be deter-
mined in polynomial time in the size of the zero day attack
graph. The NP-hard problem of finding the minimum attack
(that is, an attack sequence with the minimum number of
exploits) in an attack graph may be reduced to the current
problem. The reduction cannot be trivially achieved by sim-
ply replacing each known exploit with a zero day exploitina
given attack graph of known exploits, because the zero day
exploits may have a fixed number of hard-coded pre- and
post-conditions that may prevent a zero day exploit from
fitting in the position of a known exploit.

A zero day attack graph G' may be constructed by injecting
a zero day exploit before each known exploit. Specifically,
first let G'=G. Then, for each known exploit e of a service s
from a source host h, to a different destination host h,, a zero
day exploit €' may be injected with the post-conditions {(s,
Do)Duseross | WHETE P,eur.ss 18 @ privilege designed not to be the
pre-condition of any exploit (e' can be interpreted as exploit-
ing a vulnerability in a security service, such as a personal
firewall, that blocks accesses to the service s on h, from h,).
Then the following two statements may be true. First, execut-
ing e requires ¢' to be executed first; conversely, if e’ needs to
be executed, then the only reason must be to satisty the
condition (s,h,) and consequently execute e. That is, any
attack sequence in G' will include either both e and e', or
neither e nor e'. Second, among the three conditions in
pre(e)={(s",h,),(h; ,)0,),(Pronssshts) 5 the first is an initial con-
dition and the last two are also members of pre(e). Therefore,
the injection of ¢' does not change the logical structure of the
attack graph (more precisely, G and G' are isomorphic if e and
e' are regarded as a single exploit and ignore the initial con-
dition (s',h,)).

Next, for each known exploit e involving the same source
and destination host h, e may be replaced with a zero day
exploit e' and a known exploit " satisfying that post(e")=post
(e), pre(e")=pre(e)\{(p,h)}U{(p'h)} where (p,h)epre(e) and
{(')h)} are two privileges. Also, post(e")={(p'h)}, and the
relation =, may be designed such that ¢' is not related to any
other zero day exploits in h through =,. Then the following
two facts may be true. First, any attack sequence in G' will
include either both e and €', or neither e nor €'. Second, the
injection of e' does not change the logical structure of the
attack graph.

Based on the above construction, given any asset a, for any
attack sequence q'eseq(a) in G', the known exploits in q also
form an attack sequence qeseq(a) in G(note that a will always
be the post-condition of known exploits due to the above
construction). Moreover, if =, is designed in such a way that
no two zero day exploits are related by =,, then Iql=k0d
(q'NE,,9). Therefore, for any non-negative integer k, finding

US 9,325,729 B2

11
q'in G'to minimize k0d(q'NE,,@) will immediately yield q in
G that also minimizes Iql, and the latter is essentially the
minimum attack problem. This shows the former to be an
NP-hard problem and concludes the proof.

Note that the intractability result above implies that a single
algorithm may be unable to efficiently determine k for all
possible inputs (that is, arbitrary zero day attack graphs) in
some embodiments. However, efficient solutions may exist
for practical systems. Examples of such solutions are pre-
sented in FIGS. 7 and 8 below.

Note that an extremely conservative assumption may yield
a trivial result (e.g., no network is 1-zero day safe, if insider
attacks are considered possible on every host). While such an
assumption may be the safest, it may also be the least helpful
in terms of improving network security since no improvement
measures would be helpful.

FIG. 7 depicts a k-zero day computation flow chart for a
given k according to an embodiment of the invention. For
many practical purposes, it may suffice to know that every
asset in a network is k-zero day safe for a given value of k,
even though the network may in reality be k'-zero day safe for
some unknown k'>k (for example, determining k' may be
intractable as described above). In many other practical cases,
it may suffice to know that a particular target (or targets) is
k-zero day safe for a given value of k. In the example of FIG.
7,the solution’s complexity is polynomial in the size of a zero
day attack graph if k is a constant compared to this size.
Attempts may be made compromise each asset with less than
k distinct zero day exploits through a forward search of lim-
ited depth. The asset may not be k-zero day safe if any branch
of the search succeeds, and vice versa.

Specifically, FIG. 7 shows a recursive procedure kOd Fwd
600 with two base cases and one recursive case. A zero day
attack graph G, an asset a, and a real number k may be input
605. T, and T _in FIG. 7 may indicate the exploits and condi-
tions visited so far, respectively. In the first base case, the
procedure may determine whether asset a can be compro-
mised with less than k distinct zero day exploits in T, 610 and
may return FALSE when it can 615. In the second base case,
the procedure may determine whether the set T, already has
more than k distinct zero day exploits 620 (regardless of
whether a can be satisfied with T_) and may return TRUE
when it can 625. A sub-procedure kOd Reachable 650 may
expand Te with all reachable known exploits 655 since they
do not count in terms of the kOd(.) metric. The main procedure
may enter the recursive case only when T, includes less than
k distinct zero day exploits and a cannot be satisfied with T ..
The main procedure may iteratively visit each zero day
exploit e reachable from T_ 630, and may starts a recursive
search from e 635. If no such e exists, the procedure may
return TRUE indicating the end of a sequence is reached 640.
If any branch of the search succeeds, FALSE may be recur-
sively returned to indicate a is not k-zero day safe 645.

FIGS. 8A and 8B depict a flow chart for finding shortest
paths in a directed acyclic graph (DAG) according to an
embodiment of the invention. Even if it is intractable to com-
pute k for arbitrary zero day attack graphs, efficient solutions
may exist for those satisfying special properties. In this
example, two assumptions may be made. First, most exploits
will only require one condition on the remote host (e.g., when
ahost is only used as a stepping stone, the condition could be
a user privilege on that host). Second, zero day exploits will
be distinct unless they are on the same or adjacent hosts.

The first assumption may imply that a logical proposition
may be derived (as in procedure k0d Bwd above) separately
for each host. In the resultant DNF, each conjunctive clause
may include at most one condition involving a remote host,

10

15

20

25

30

35

40

45

50

55

60

65

12

which means the asset can be expressed as a disjunction of
conditions (without considering exploits). The same reason-
ing may be repeated by regarding each such condition as an
asset on the involved remote host. Since the relationships
between all conditions are now disjunctive, each condition
may be regarded as the vertex of a DAG (recall that cycles will
be avoided) with their disjunctive relationships as edges, and
exploits in the same conjunctive clause as edge weights.

In the weighted DAG, determining the value of k may
amount to finding the shortest path along which the function
k0d(.) applied to all zero day exploits will yield the minimum
value. During a backward search, two parts may comprise a
distance for each edge. Those zero day exploits that may later
be related to others through =, may be kept in a set since the
function k0d(.) can not yet be applied. For other exploits, the
result value of applying kOd(.) may be kept. The second
assumption above may ensure that the first part of the edge
distance will not grow quickly. The shortest distance can then
be obtained using a standard algorithm, taking polynomial
time (more precisely, the complexity is shown to be [HI*|EO
as described below).

In FIG. 8A, procedure kOd Shortest 700 may provide a
specific example of a method for finding shortest paths in a
DAG. In FIG. 8B, sub procedure kOd Graph 750 may be used
to build a DAG based on a given zero day attack graph and
asset.

The main procedure 700 may imitate a standard algorithm
for finding the shortest path in a DAG. More specifically, a
zero day attack graph and asset may be defined 703. A DAG
may be generated 706, 709, and vertices of the DAG may be
processed based on a topological sort 712. The distance of the
source vertex may be initialized as 0, and the distance of other
vertices may be initialized as infinity 715. Each vertex may be
processed 718. Upon processing a vertex 721, each of its
neighbors 724 may be updated with potentially shorter dis-
tances via the current vertex. The following modifications to
the standard shortest distance algorithm may take into
account zero day exploits related by =,. First, instead of a
single number, each distance may now be a set of pairs (x.y),
where x denotes the result of applying k0d(.) to exploits that
will not later be related to others by =, and y denotes the set
of zero day exploits that may later be related to others. More
than one pair may be used to define a distance. Second,
reachable edges may be collected in order to determine
whether an exploit may later be related to others by =, 727.
Third, instead of simply calculating the minimum distance,
both parts of each distance pair may be computed based on the
distance of current vertex and the edge weight 733, 736. The
new distance pair may then be added 739. Finally, after all
distance pairs are added, the set of distance pairs may be
examined 742 to remove those that cannot be the minimum
distance even when considering the effect of relation =, 745.
Finally, the minimum shortest distance from the asset to a
dummy vertex (representing initial conditions) may be
returned as the result k 748.

Turning to the sub-procedure 750, a zero day attack graph,
an asset, a DAG, and an array may be entered 753. A logical
proposition of the asset in terms of exploits and conditions
may be derived 766 using the same statements as in procedure
kOd Backward 755, 756, 759, 762, 765 as described above.
This derivation may stop whenever the DNF of the logic
proposition includes at most one condition in each conjunc-
tive clause 770. The sub-procedure 750 then may add each
such conjunctive clause to the result DAG by regarding each
condition as a vertex pointed to by the asset 773,776,779, and
the set of exploits in the same conjunctive clause as the edge
weight 782. The sub-procedure 750 may recursively expand

US 9,325,729 B2

13

on each such condition 785. If a conjunctive clause does not
include a condition (meaning that only initial conditions are
required) 776, a dummy vertex may be added to represent the
collection of deleted initial conditions 788, 791. Finally, G,
may be returned 794.

FIG. 9 depicts a DAG 800 according to an embodiment of
the invention. The execution of procedures kOd shortest 700
and kOd graph 750 may be used to generate a DAG 800. The
DAG 800 may be a DAG for a scenario corresponding to the
scenario of FIG. 4 above with respect to <root,2> 320, and
may in fact be a compliment of FIG. 4. Each edge is labeled
with the edge weight elabel 810-840 (which may correspond
to a vulnerability, for example) and each vertex is labeled with
the distance dist 371-378 (which may correspond to a com-
ponent, for example). The complexity of the procedure may
depend on how well the aforementioned assumptions hold on
a given zero day attack graph. First, the complexity of sub-
procedure kOd graph 750 may be exponential in the number of
exploits and conditions involved in the first loop 755-765 of
FIG. 8B. Therefore, if the first assumption perfectly holds,
this loop 755-765 may always terminate after processing a
single host. If the number of exploits and conditions on each
host is constant, then the complexity of the sub-procedure
may be linear in the number of hosts (that is, a constant time
may be required for deriving and processing L. for each host).
Second, the complexity of the main procedure may depend on
the size of the distance of each vertex. If the second assump-
tion holds perfectly such that each distance has a negligible
size, then the complexity of the main procedure may be domi-
nated by processing the reachable edges in elist and their
labels elabel 733 as shown in FIG. 8A. Since each edge in G,
may be visited exactly once by the main loop and the size of
elistmay be linear in the number of such edges, the processing
of elist may take quadratic time in the number of edges in G,
which may be roughly O(IHI*) (by the first assumption, each
host may correspond to a constant number of vertices in G,).
Finally, multiplying this by the size of elabel, the complexity
IHI4-EOI may be obtained.

K-zero day safety determinations may have many uses. For
example, determining k-zero day safety for a target may
enable network hardening to make a target k-zero day safe for
a larger k. For example, consider unfolding k based on the
following model:

k=k0d(A)=2 s (KOH(@) V(@))/Z geqv(@) M

k0d(a)=min({k0d(qgNEy,J):qeseq(a)}) 2)
k0d(gNE(,@"y=max({|FI:F € gNE,, (Ve ,e,eF)
(e1=02)}) 3

seq(a)={epes, ..., e;:aepost(e;), 4
(Vief1,7])(Vcepre(e))(ceC)) v (Axel1,
i-1]cepost(e,))}.

For example, it may be possible to increase k by:

Increasing services’ diversity to have more distinct
exploits in equation (3).

Strengthening isolation techniques to have more distinct
exploits in equation (3).

Disabling initial conditions (e.g., removing a service or a
connection) in CI to yield longer attack sequences in line (5)
(part of equation (4)).

Enforcing more strict access control policies to lessen the
risk of insider attacks or user mistakes (thus removing con-
ditions from CI in line (5)).

®

20

25

40

45

50

55

14

Protecting assets with backups (conjunction of conditions)
and detection efforts (negation of conditions) to yield a longer
sequence in equation (4).
Introducing more security services to regulate accesses to
remote services for a longer sequence in equation (4).
Patching known vulnerabilities such that fewer shortcuts
for bypassing zero day exploits yield a longer sequence in
equation (4).
Prioritizing the above options based on the asset values in
equation (1) and shortest attack sequences in equation (2).
Some of the aforementioned hardening options are known
by those of ordinary skill in the art, and other known or
unknown hardening techniques may also increase k. Regard-
less of which hardening techniques are used, a k-zero day
safety determination may quantify their effectiveness. More
effective hardening techniques may yield a larger k. In addi-
tion to hardening applications, k-zero day safety day deter-
minations may have other uses. For example, an owner or
administrator of a cloud network or other service may be able
to attract customers by demonstrating a large k for their
systems and therefore a high degree of network security.
While various embodiments have been described above, it
should be understood that they have been presented by way of
example and not limitation. It will be apparent to persons
skilled in the relevant art(s) that various changes in form and
detail can be made therein without departing from the spirit
and scope. In fact, after reading the above description, it will
be apparent to one skilled in the relevant art(s) how to imple-
ment alternative embodiments. Thus, the present embodi-
ments should not be limited by any of the above-described
embodiments
In addition, it should be understood that any figures which
highlight the functionality and advantages are presented for
example purposes only. The disclosed methodology and sys-
tem are each sufficiently flexible and configurable such that
they may be utilized in ways other than that shown.
Although the term “at least one” may often be used in the
specification, claims and drawings, the terms “a”, “an”, “the”,
“said”, etc. also signify “at least one” or “the at least one” in
the specification, claims and drawings.
Finally, it is the applicant’s intent that only claims that
include the express language “means for” or “step for” be
interpreted under 35 U.S.C. 112, paragraph 6. Claims that do
not expressly include the phrase “means for” or “step for” are
not to be interpreted under 35 U.S.C. 112, paragraph 6.
What is claimed is:
1. A method for securing a network vulnerable to attack
from at least one origin to at least one target, the network
including at least one machine having a plurality of compo-
nents, the method comprising:
(1) causing a present security of the network to be deter-
mined, wherein the present security of the network is
indicated by a safety level of the network, wherein the
safety level is determined by:
associating, with a computer, the at least one machine
with the plurality of components, the plurality of com-
ponents comprising an origin component and a target
component;

associating, with the computer, each of the plurality of
components with at least one of a plurality of vulner-
abilities; generating, with the computer, an attack
graph describing exploitation of each of the plurality
of vulnerabilities, the attack graph defining exploit
condition relationships between the origin compo-
nent and the target component;

analyzing, with the computer, the attack graph using a
k-zero day metric function based on a number of

US 9,325,729 B2

15

distinct zero day exploits required to compromise the
target component in an attack starting from the origin
component; and

determining, with the computer, the safety level based
on the analysis of the attack graph using the k-zero
day metric function; and
(ii) causing hardening to be performed on the network
based on the determined safety level.
2. The method of claim 1, wherein:
the analyzing of the attack graph comprises determining a
minimum number of distinct zero day exploits required
to compromise the target component by iteratively
applying the k-zero day metric function to the attack
graph for each of the plurality of vulnerabilities to deter-
mine a minimum number of exploitable vulnerabilities
required to compromise the target component; and
the safety level comprises a minimum number of distinct
zero day exploits required to compromise the target
component.
3. The method of claim 1, wherein:
the analyzing of the attack graph comprises determining
whether the target component is unable to be compro-
mised by a specific number of distinct zero day exploits
by analyzing the attack graph using a k-zero day metric
function to determine whether any number of vulner-
abilities required to compromise the target component is
less than the specific number; and
the safety level comprises an indication whether the target
component is unable to be compromised by the specific
number of zero day exploits.
4. The method of claim 1, wherein each of the plurality of
components is any unit of computational processing that can
contribute to a network attack vulnerability.
5. The method of claim 1, further comprising generating
with the computer a visual presentation of at least part of the
attack graph.
6. The method of claim 1, wherein the network is a cloud
network.
7. A computer system, comprising:
a computer constructed and arranged to determine a safety
level of an original network vulnerable to attack from at
least one origin to at least one target, the original net-
work including at least one machine having a plurality of
components, the computer comprising: a processor con-
structed and arranged to:
associate the at least one machine with the plurality of
components, the plurality of components comprising
an origin component and a target component;

associate each of the plurality of components with at
least one of a plurality of vulnerabilities;

generate an attack graph describing exploitation of each
of the plurality of vulnerabilities, the attack graph
defining exploit condition relationships between the
origin component and the target component;

analyze the attack graph using a k-zero day metric func-
tion based on a number of distinct zero day exploits
required to compromise the target component in an
attack starting from the origin component; and

determine a safety level based on the analysis of the
attack graph using the k-zero day metric function; and

a hardened network created by performing hardening on
the original network based on the determined safety
level.

8. The computer of claim 7, wherein:

the processor is constructed and arranged to analyze the
attach graph by determining whether the target compo-
nent is unable to be compromised by a. specific number

10

25

30

35

40

45

50

16

of distinct zero day exploits by analyzing the attack
graph using a k-zero day metric function to determine
whether any number of vulnerabilities required to com-
promise the target component is less than the specific
number; and
the safety level comprises an indication whether the
target component is unable to be compromised by the
specific number of zero day exploits.

9. The computer of claim 7, wherein:

the processor is constructed and arranged to analyze the
attack graph by determining whether the target compo-
nent is unable to be compromised by a specific number
of distinct zero day exploits by analyzing the attack
graph using a k-zero day metric function to determine
whether any number of vulnerabilities required to com-
promise the target component is less than the specific
number; and

the safety level comprises an indication whether the target
component is unable to be compromised by the specific
number of zero day exploits.

10. The computer of claim 7. wherein each of the plurality

of components is any unit of computational processing that
can contribute to a network attack vulnerability.

11. The computer of claim 7, further comprising:

a display;

wherein the processor is further constructed and arranged
to generate a visual representation of at least part of the
attack graph and output the visual representation to the
display.

12. The computer of claim 7, wherein the original network

is a cloud network.

13. The computer of claim 7, wherein:
the processor is in communication with the original net-
work; and
the processor is further constructed and arranged to scan
the original network to gather data about the at least one
machine, the plurality of components, and/or the at least
one of the plurality of vulnerabilities.
14. The computer of claim 7, wherein;
the processor is in communication with the original net-
work; and
the processor is further constructed and arranged to receive
data via the original network about the at least one
machine, the plurality of components, and/or the at least
one of the plurality of vulnerabilities.
15. A computer network system, comprising:
ahardened network created by performing hardening on an
original network based on a safety level of the original
network, the original network being vulnerable to attack
from at least one origin to at least one target, the original
network including at least one machine having a plural-
ity of components, wherein the safety level is deter-
mined by:
associating, with a computer, the at least one machine
with plurality of components, the plurality of compo-
nents comprising an origin component and a target
component;
associating, with the computer, each of the plurality of
components with at least one of a plurality of vulner-
abilities;
generating, with the computer, an attack graph describ-
ing exploitation of each of the plurality of vulnerabili-
ties, the attack graph defining exploit condition rela-
tionships between the origin component and the target
component;
analyzing, with the computer, the attack graph using a
k-zero day metric function based on a number of

US 9,325,729 B2

17

distinct zero day exploits required to compromise the
target component in an attack starting from the origin
component; and

determining, with the computer, the safety level based
on the analysis of the attack graph using the k-zero
day metric function.

16. The computer network system of claim 15, wherein:

the analyzing or the attack graph comprises determining a

minimum number of distinct zero day exploits required
to compromise the target component by iteratively
applying the k-zero day metric function to the attack
graph for each of the plurality of vulnerabilities to deter-
mine a minimum number of exploitable vulnerabilities
required to compromise the target component; and

the safety level comprises a minimum number of distinct

zero day exploits required to compromise the target
component.

17. The computer network system of claim 15, wherein:

the analyzing, of the attack graph comprises determining

whether the target component is unable to be compro-
mised by a specific number of distinct zero day exploits
by analyzing the attack graph using a k-zero day metric
function to determine whether any number of vulner-
abilities required to compromise the target component is
less than the specific number; and

the safety level comprises an indication whether the target

component is unable to be compromised by the specific
number of zero day exploits.

18. The computer network system of claim 15, wherein
each of the plurality of components is any unit of computa-
tional processing that can contribute to a network attack vul-
nerability.

10

15

20

25

30

18

